## **24.** Completion of diagram:



| 26. | Calculation of g.p.e:<br>Use of $m = \rho V$ (1)                                                                           |   |      |
|-----|----------------------------------------------------------------------------------------------------------------------------|---|------|
|     | Use of $E_p = mgh [m = 8.1 \times 10^{6} \text{ kg}]$ (1)<br>64 J (1)                                                      | 3 |      |
|     | Explanation:<br>(Some) water has moved up (1)                                                                              | 1 |      |
|     | Why g.p.e. is less:<br>Water has less mass (1)<br>Water has lower density/ moved up same distance/where the block was. (1) |   |      |
|     | OR                                                                                                                         |   |      |
|     | Some energy is dissipated/lost to surroundings/converted to other forms (1) K.E./internal energy/heat/sound (1)            |   |      |
|     | OR                                                                                                                         |   |      |
|     | Mechanism: via friction or drag/because the block or water accelerates/as block hits the bottom (2)                        | 2 | [6]  |
| 27  | A mount of work done by each of the former                                                                                 |   |      |
| 21. | <u>Amount of work done by each of the forces</u>                                                                           |   |      |
|     | (Each of the forces does)zero (1)                                                                                          | 2 |      |
|     | No marks if imply that work = 0 because forces cancel]                                                                     | 2 |      |
|     | $\begin{bmatrix} \text{No marks in mpry that work } = 0 \text{ because forces cancer} \end{bmatrix}$                       |   |      |
|     | Use of gradient seen/implied (1)                                                                                           |   |      |
|     | $E = 2.7 \pm 2.0 \text{ N}(1)$                                                                                             | 2 |      |
|     | F = 2.7 - 2.9  N(1)                                                                                                        | Z |      |
|     | $\frac{Otaph}{2}$                                                                                                          |   |      |
|     | Straight line linishing at $(1.8, 0)$ (+ or - 1 small square) (1)<br>Starting at $(0, 5)$ (+ or - 1 small square) (1)      | 2 |      |
|     | Starting at $(0, 5)$ (+ or - 1 small square) (1)                                                                           | Z |      |
|     | <u>Carculation of speed</u>                                                                                                |   |      |
|     | Use of k.e. = $\frac{1}{2}mv^2$ / use of $F = ma$ and equation of motion (1)                                               |   |      |
|     | $v = 3.5 \text{ ms}^{-1} (\text{ecf}) (1)$                                                                                 | 2 |      |
|     | Sketch of graph                                                                                                            |   |      |
|     | Ascending line whose gradient decreases as $d$ increases (1)                                                               | 1 |      |
|     | Shape of graph                                                                                                             |   |      |
|     | Force greater at higher speed/gradient is the force/force decreases with distance (1)                                      | 1 | [10] |
|     |                                                                                                                            |   | [10] |
| 28. | Gravitational potential energy                                                                                             |   |      |
|     | Use of <i>mgh</i>                                                                                                          | 1 |      |
|     | Vertical drop per second = $(8.4 \text{ m}) \sin (3^{\circ})$                                                              | 1 |      |
|     | $3.9\times10^2~J/Js^{-1}/W$                                                                                                | 1 |      |
|     |                                                                                                                            |   |      |

What happens to this lost gpe

|     | Beco<br>drag | omes internal energy/used to do work against friction and/or<br>/heat/thermal energy. [mention of KE loses the mark]                                                                                                                 | 1 |     |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|     | Estii        | mate of rate at which cyclist does work                                                                                                                                                                                              |   |     |
|     | Rate         | of working = $2. \times 3.9 \times 10^2$ W                                                                                                                                                                                           | 1 |     |
|     | =7.8         | $\times 10^2 \mathrm{W}$                                                                                                                                                                                                             | 1 |     |
|     | [3.9         | $\times 10^2$ W earns 1 out of 2]                                                                                                                                                                                                    |   |     |
|     |              |                                                                                                                                                                                                                                      |   | [6] |
| 29. | (a)          | Energy change                                                                                                                                                                                                                        |   |     |
|     |              | Both parts correct [NB 1 mark only] (1)<br>Gravitational potential (energy) to kinetic / movement (energy) /<br>work done                                                                                                            | 1 |     |
|     | (b)          | Principal of conservation of energy                                                                                                                                                                                                  |   |     |
|     |              | EITHER (1) (1)<br>Energy can be neither created nor destroyed<br>OR                                                                                                                                                                  |   |     |
|     |              | Energy cannot be created/destroyed / total energy is not (1)<br>lost/gained<br>merely transformed from one form to another / in a                                                                                                    |   |     |
|     |              | closed/isolated system (1)                                                                                                                                                                                                           | 2 |     |
|     | (c)          | Speed of water<br>Correct substitution into correct formula (1)<br>Correct value with correct unit (1)<br>Power = force × velocity                                                                                                   | 2 |     |
|     |              | $1.7 \times 10^9$ (W) = $3.5 \times 10^8$ (N) × V<br>V = 4.86 m s <sup>-1</sup>                                                                                                                                                      |   |     |
| _   | (d)          | Explanation                                                                                                                                                                                                                          |   |     |
|     |              | Not all the energy of the falling water is transferred to the output<br>power OR system is not 100% efficient OR water is not brought (1)<br>to rest OR friction OR some of the energy is transferred to<br>heat/sound/surroundings. | 1 |     |
|     | (e)          | <u>Time</u><br>Correct value with correct unit. (1)                                                                                                                                                                                  | 1 |     |
|     |              | Time = $\frac{7 \times 10^6 (\text{m}^3)}{390 (\text{m}^3 \text{s}^{-1})} = 17949 \text{s} (= 299 \text{min}) (= 5 \text{h})$                                                                                                        |   |     |
|     | (f)          | Work done                                                                                                                                                                                                                            |   |     |
|     |              | Correct substitution into correct formula to find mass of water (1)                                                                                                                                                                  |   |     |
|     |              | Identifying<br>"work done = force x distance moved in direction of force" (1)                                                                                                                                                        |   |     |
|     |              | Correct value with correct unit (1)                                                                                                                                                                                                  |   |     |
|     |              | Mass of water = volume $\times$ density                                                                                                                                                                                              | 3 |     |
|     |              | $= 7 \times 10^{6} \text{ (m}^{3}) \times 10^{3} \text{ (kg m}^{-3}) (= 6.9 \times 10^{9} \text{ kg})$                                                                                                                               |   |     |
|     |              | Work done = force $\times$ distance                                                                                                                                                                                                  |   |     |

Work done =  $6.9 \times 10^9$  (kg) x 9.81 (ms<sup>-2</sup>) x 500 (m) =  $3.43 \times 10^{13}$  J

# **30.** Expression for $E_k$ and work done / base unit

(a) (i) Kinetic energy =  $\frac{1}{2} mu^2$ 

Work done = Fd[must give expressions in terms of the symbols given in the question] (1) 1

(ii) Base units for kinetic energy =  $(kg (m s^{-1})^2) = kg m^2 s^{-2}$  (1) Base units for work done =  $kgms^{-2} .m = kg m^2 s^{-2}$  (1) [derivation of kg m<sup>2</sup> s<sup>-2</sup> essential for 2<sup>nd</sup> mark to be given] [Ignore persistence of <sup>1</sup>/<sub>2</sub>] [ For 2<sup>nd</sup> mark ecf mgh for work from (a)(i)]

### (b) Show that the braking distance is almost 14 m

[Bald answer scores 0; Reverse calculation max 2/3]

### Either

Equating work done and kinetic energy [words or equations] (1)

Correct substitution into kinetic energy equation **and** correct substitution (1) into work done equation

Correct answer [13.8 (m)] to at least 3 sig fig. [No ue] (1)

$$0.5 \times m \times (13.4 \text{ m s}^{-1})^2 = m \times 6.5 \text{ m s}^{-2} \times d$$

$$\frac{0.5 \times m \times (13.4 \text{ ms}^{-1})^2}{m \times 6.5 \text{ ms}^{-2}} = 13.8 \text{ (m)}$$
3

[*m* may be cancelled in equating formulae step and not seen subsequently]

# OR

Selecting  $v^2 = u^2 + 2as$  OR 2 correct equations of motion (1) Correct magnitudes of values substituted (1) [i.e.  $0 = (13.4 \text{ m s}^{-1})^2 + 2((-)6.5 \text{ m}^{-2})\text{s}]$ Correct calculation of answer [13.8 (m)] to at least 3 sig fig. [No ue] (1)

## (c) <u>Why braking distance has more than doubled</u>

QOWC (1)

### Either

(Because speed is doubled and deceleration is unchanged) time (1) (to be brought to rest) is doubled/increased. (Since) distance = speed x time [mark consequent on first] or  $s = ut + \frac{1}{2} at^2$  (1) the distance is increased by a factor of (about) 4 (1)

## Or

Recognition that (speed)<sup>2</sup> is the key factor (1) Reference to  $v^2 = u^2 + 2as$  or rearrangement thereof or kinetic energy (1) [second mark consequent on first] (Hence) distance is increased by a factor of (almost) 4 (1)

# Or

Do calculation using  $v^2 = u^2 + 2as$  and use 26.8 m s<sup>-1</sup> and 6.5 m s<sup>-2</sup> (1) Some working shown to get answer 55.2 m (1) (Conclusion that) distance is increased by a factor of (almost) 4 [Note : unlikely that QOWC mark would be awarded with this method] (1) 2

4

#### Or

Accurate labelled *v*-*t* graphs for both (1) Explanation involving comparison of areas (1) Distance is increased by a factor of (almost) 4 (1)

[In all cases give 4<sup>th</sup> mark if 4 is not mentioned but candidate shows more than doubled eg "Speed is doubled and the time increased, therefore multiplying these gives more than double."]

# [10]

**31.** (i) <u>Work done</u>

Use of work done = force × distance (1) Answer given to at least 3 sig fig. [2396 J, 2393 J if 9.8 m s<sup>-2</sup> is used, (1) 2442 J if  $g = 10 \text{ m s}^{-2}$  is used. No ue.]

Work done = 
$$110 \text{ kg} \times 9.81 \text{ m s}^{-2} \times 2.22 \text{ m}$$
  
= 2395.6 J

(ii) <u>Power exerted</u>

Use of power = 
$$\frac{\text{work done}}{\text{time}}$$
 or power =  $F \times v$  (1)

Answer: [799 W. 800 W if 2400 J is used and 814 W if 2442 J is used. Ecf value from (i)] (1)

2

3

 $Power = \frac{2396 \text{ J}}{3\text{s}}$ = 798.6 W

(iii) Principle of Conservation of Energy

# Either

Energy can neither be created nor destroyed (1) (1)

# OR

Energy cannot be created/destroyed or <u>total</u> energy is not lost/gained (1) (merely) transformed from one form to another or in a closed/isolated system. (1)

[Simple statement 'Energy is conserved' gets no marks] [Information that is not contradictory ignore.  $\Delta Q = \Delta U + \Delta W$ , with terms defined acceptable for 1st mark]

(iv) <u>How principle applied to...</u>

Lifting the bar: -<u>Chemical</u> energy (in the body of the weightlifter) or <u>work done</u> (lifting bar) = (gain in) <u>g.p.e.</u> (of bar) (1) [Reference to k.e. is acceptable]

The bar falling: -Transfer from g.p.e. to k.e. (1) (and that) g.p.e. lost = k.e. gained (1)

['g.p.e. converted to k.e.' would get one mark] [References to sound and thermal energy are OK, but gpe to sound or thermal energy on its own gets no marks] (v) <u>Speed of bar on reaching the floor</u> Setting  $\frac{1}{2}mv^2 = m g h \text{ or } \frac{1}{2}mv^2 = \text{work done or } 2400 \text{ J (1)}$ [ecf their value] [Shown as formulae without substitution or as numbers substituted into formulae] Correct values substituted (1) [allow this mark if the 110 kg omitted – substitution gives  $v^2 = (1)$   $43.55(6) \text{ m}^2 \text{ s}^{-2} \text{ or } 44.4 \text{ m}^2 \text{ s}^{-2} \text{ if } g = 10 \text{ m s}^{-2} \text{ is used}]$ Answer:  $[6.6 \text{ m s}^{-1}. 6.7 \text{ m s}^{-1} \text{ if } g = 10 \text{ m s}^{-2} \text{ is used.}]$   $\frac{1}{2} 110 \text{ kg} \times v^2 = 110 \text{ kg} \times 9.81 \text{ m s}^{-2} \times 2.22 \text{ m or } = 2400 \text{ J} / 2396 \text{ J}$   $v = 6.6 \text{ m s}^{-1} [6.66 \text{ m s}^{-1} \text{ if } 10 \text{ m s}^{-2} \text{ used}] (1)$  **OR** Selects  $v^2 = u^2 + 2as$  or selects 2 relevant equations (1) Correct substitution into equation (1) Answer  $[6.6 \text{ m s}^{-1}] (1)$ 

 $v^2 = 0. + 2 \times 9.81 \text{ ms}^{-2} \times 2.22 \text{m}$  $v = 6.6 \text{ ms}^{-1}$ 

3

[12]