24. Completion of diagram:

(1)

1
(i) Useful work done by motor:

Correct substitution in $m g h$, i.e. $3400(\mathrm{~kg}) 9.81\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \times 30(\mathrm{~m})(\mathbf{1})$
$=1.00 \mathrm{MJ}$ OR M Nm [1.02 MJ] (1)
(ii) Power output of motor:

Power = above (J) / 15 (s) (1)
$=67 \mathrm{~kW}$ [e.c.f.] (1)
Overall energy conversion occurring as vehicle travels from B to C:

Speed of vehicle at point C:
$\Delta h=18 /(30-12)(1)$
Use of $1 / 2 m v^{2}=$ g.p.e. lost (1)
[If get height wrong, can only get second mark]
$v=19 \mathrm{~m} \mathrm{~s}^{-1}\left[18.8 \mathrm{~m} \mathrm{~s}^{-1}\right]$
How speed at C would be expected to differ from previous answer:
Same speed/no effect [If this is wrong, no marks] (1)
GPE and KE both symbol 181 \f " $12 \mu \mathrm{~m}$ OR
g same for all masses OR ms cancel (1)
[Not g is constant]
25. Gain in g.p.e. $=(55.0 \mathrm{~kg}) \times\left(9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right) \times(3.60) \mathrm{m}$ $=1940 \mathrm{~J}$
Power = gain in g.p.e./time
Power $=1080 \mathrm{~W}$
Units correctly attached to a correct equation
e.g. $\frac{\text { Power }}{\text { Weight }}=\frac{\mathrm{Nms}^{-1}}{\mathrm{~N}}$
$=\mathrm{ms}^{-1}$
Power to weight ratio $=\frac{1080 \mathrm{~W}}{(55.0 \mathrm{~kg}) \times\left(9.81 \mathrm{~ms}^{-2}\right)}$
(allow e.c.f. for power)
Power to weight ratio $=2\left[\mathrm{~ms}^{-1}\right] \quad 2$
26. Calculation of g.p.e:

Use of $m=\rho V \quad$ (1)
Use of $E_{\mathrm{p}}=m g h\left[m=8.1 \times 10^{x} \mathrm{~kg}\right] \quad$ (1)
64 J (1)
Explanation:
(Some) water has moved up (1)
1
Why g.p.e. is less:
Water has less mass (1)
Water has lower density/ moved up same distance/where the block was. (1)
OR
Some energy is dissipated/lost to surroundings/converted to other forms (1) K.E./internal energy/heat/sound (1)

OR
Mechanism: via friction or drag/because the block or water accelerates/as block hits the bottom (2)

2
27. Amount of work done by each of the forces
(Each of the forces does)zero (1)
Forces perpendicular to motion [consequent] (1) 2
[No marks if imply that work $=0$ because forces cancel]
Determination of force F
Use of gradient seen/implied (1)
$F=2.7-2.9 \mathrm{~N}(\mathbf{1})$
2
Graph
Straight line finishing at (1.8, 0) (+ or -1 small square) (1)
Starting at (0,5) (+ or -1 small square) (1)
Calculation of speed
Use of k.e. $=1 / 2 m v^{2} /$ use of $F=m a$ and equation of motion (1)
$\mathrm{v}=3.5 \mathrm{~ms}^{-1}$ (ecf) (1)
Sketch of graph
Ascending line whose gradient decreases as d increases (1)
Shape of graph
Force greater at higher speed/gradient is the force/force decreases with distance (1)1
28. Gravitational potential energy

Use of $m g h \quad 1$
Vertical drop per second $=(8.4 \mathrm{~m}) \sin \left(3^{\circ}\right) \quad 1$
$3.9 \times 10^{2} \mathrm{~J} / \mathrm{Js}^{-1} / \mathrm{W} \quad 1$
What happens to this lost gpe

Becomes internal energy/used to do work against friction and/or drag/heat/thermal energy. [mention of KE loses the mark]
Estimate of rate at which cyclist does work
Rate of working $=2 . \times 3.9 \times 10^{2} \mathrm{~W}$ 1
$=7.8 \times 10^{2} \mathrm{~W}$
[3.9 $\times 10^{2} \mathrm{~W}$ earns 1 out of 2]
29. (a) Energy change

Both parts correct [NB 1 mark only] (1)
Gravitational potential (energy) to kinetic / movement (energy) /
work done
(b) Principal of conservation of energy

EITHER (1) (1)
Energy can be neither created nor destroyed
OR
Energy cannot be created/destroyed / total energy is not (1)
lost/gained
merely transformed from one form to another / in a
closed/isolated system (1)
2
(c) Speed of water

Correct substitution into correct formula (1)
Correct value with correct unit (1)
Power $=$ force \times velocity
$1.7 \times 10^{9}(\mathrm{~W})=3.5 \times 10^{8}(\mathrm{~N}) \times V$
$V=4.86 \mathrm{~m} \mathrm{~s}^{-1}$
(d) Explanation

Not all the energy of the falling water is transferred to the output power OR system is not 100% efficient OR water is not brought (1) to rest OR friction OR some of the energy is transferred to heat/sound/surroundings.
(e) Time

Correct value with correct unit. (1) 1
Time $=\frac{7 \times 10^{6}\left(\mathrm{~m}^{3}\right)}{390\left(\mathrm{~m}^{3} \mathrm{~s}^{-1}\right)}=17949 \mathrm{~s}(=299 \mathrm{~min})(=5 \mathrm{~h})$
(f) Work done

Correct substitution into correct formula to find mass of water (1)
Identifying
"work done = force x distance moved in direction of force" (1)
Correct value with correct unit (1)
$\begin{array}{rlr}\text { Mass of water } & =\text { volume } \times \text { density } & 3 \\ & =7 \times 10^{6}\left(\mathrm{~m}^{3}\right) \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\left(=6.9 \times 10^{9} \mathrm{~kg}\right)\end{array}$

$$
=7 \times 10^{6}\left(\mathrm{~m}^{3}\right) \times 10^{3}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)\left(=6.9 \times 10^{9} \mathrm{~kg}\right)
$$

Work done $=$ force \times distance

$$
\begin{aligned}
& \text { Work done }=6.9 \times 10^{9}(\mathrm{~kg}) \times 9.81\left(\mathrm{~ms}^{-2}\right) \times 500(\mathrm{~m}) \\
& =3.43 \times 10^{13} \mathrm{~J}
\end{aligned}
$$

30. Expression for E_{k} and work done / base unit
(a) (i) Kinetic energy $=1 / 2 m u^{2}$

Work done $=$ Fd
[must give expressions in terms of the symbols given in the question] (1) 1

Base units for work done $=\mathrm{kgms}^{-2} \cdot \mathrm{~m}=\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2} \mathbf{(1)}$
[derivation of $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$ essential for $2^{\text {nd }}$ mark to be given]
[Ignore persistence of $1 / 2$] [For $2^{\text {nd }}$ mark ecf mgh for work from (a)(i)]
(b) Show that the braking distance is almost 14 m
[Bald answer scores 0; Reverse calculation max 2/3]

Either

Equating work done and kinetic energy [words or equations] (1)
Correct substitution into kinetic energy equation and correct substitution (1) into work done equation

Correct answer [13.8 (m)] to at least 3 sig fig. [No ue] (1)
$0.5 \times m \times\left(13.4 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}=m \times 6.5 \mathrm{~m} \mathrm{~s}^{-2} \times d$
$\frac{0.5 \times m \times\left(13.4 \mathrm{~ms}^{-1}\right)^{2}}{m \times 6.5 \mathrm{~ms}^{-2}}=13.8(\mathrm{~m})$
[m may be cancelled in equating formulae step and not seen subsequently]
OR
Selecting $v^{2}=u^{2}+2$ as OR 2 correct equations of motion (1)
Correct magnitudes of values substituted (1)
[i.e. $0=\left(13.4 \mathrm{~m} \mathrm{~s}^{-1}\right)^{2}+2\left((-) 6.5 \mathrm{~m}^{-2}\right) \mathrm{s}$]
Correct calculation of answer [13.8(m)] to at least 3 sig fig. [No ue] (1)
(c) Why braking distance has more than doubled

QOWC (1)

Either

(Because speed is doubled and deceleration is unchanged) time (1)
(to be brought to rest) is doubled/increased.
(Since) distance $=$ speed x time [mark consequent on first] or $s=u t+1 / 2 a t^{2}(\mathbf{1})$ the distance is increased by a factor of (about) 4 (1)
Or
Recognition that (speed) ${ }^{2}$ is the key factor (1)
Reference to $v^{2}=u^{2}+2 a s$ or rearrangement thereof or kinetic energy (1) [second mark consequent on first]
(Hence) distance is increased by a factor of (almost) 4 (1)

Or

Do calculation using $v^{2}=u^{2}+2 a s$ and use $26.8 \mathrm{~m} \mathrm{~s}^{-1}$ and $6.5 \mathrm{~m} \mathrm{~s}^{-2}$ (1)
Some working shown to get answer 55.2 m (1)
(Conclusion that) distance is increased by a factor of (almost) 4
[Note : unlikely that QOWC mark would be awarded with this method] (1)

Or
Accurate labelled v - t graphs for both (1)
Explanation involving comparison of areas (1)
Distance is increased by a factor of (almost) 4 (1)
[In all cases give $4^{\text {th }}$ mark if 4 is not mentioned but candidate shows more than doubled eg "Speed is doubled and the time increased, therefore multiplying these gives more than double."]
31. (i) Work done

Use of work done $=$ force \times distance (1)
Answer given to at least 3 sig fig. [2396 J, 2393 J if $9.8 \mathrm{~m} \mathrm{~s}^{-2}$ is used, (1)
2442 J if $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ is used. No ue.]
Work done $=110 \mathrm{~kg} \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 2.22 \mathrm{~m}$

$$
=2395.6 \mathrm{~J}
$$

(ii) Power exerted

Use of power $=\frac{\text { work done }}{\text { time }}$ or power $=F \times v(\mathbf{1})$
Answer: [799 W. 800 W if 2400 J is used and 814 W if 2442 J is used. Ecf value from (i)] (1)

$$
\begin{aligned}
\text { Power } & =\frac{2396 \mathrm{~J}}{3 \mathrm{~s}} \\
& =798.6 \mathrm{~W}
\end{aligned}
$$

(iii) Principle of Conservation of Energy

Either
Energy can neither be created nor destroyed (1) (1)
OR
Energy cannot be created/destroyed or total energy is not lost/gained (1) (merely) transformed from one form to another or in a closed/isolated system. (1)
[Simple statement 'Energy is conserved’ gets no marks]
[Information that is not contradictory ignore. $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$, with terms defined acceptable for 1st mark]
(iv) How principle applied to...

Lifting the bar: -
Chemical energy (in the body of the weightlifter) or work done
(lifting bar) $=($ gain in) g.p.e. $($ of bar) (1)
[Reference to k.e. is acceptable]
The bar falling: -
Transfer from g.p.e. to k.e. (1)
(and that) g.p.e. lost = k.e. gained (1) 3
['g.p.e. converted to k.e.' would get one mark]
[References to sound and thermal energy are OK, but gpe to sound or thermal energy on its own gets no marks]
(v) Speed of bar on reaching the floor

Setting $1 / 2 m v^{2}=m g h$ or $1 / 2 m v^{2}=$ work done or 2400 J (1) [ecf their value]
[Shown as formulae without substitution or as numbers substituted into formulae]
Correct values substituted (1)
[allow this mark if the 110 kg omitted - substitution gives $v^{2}=(\mathbf{1})$ $43.55(6) \mathrm{m}^{2} \mathrm{~s}^{-2}$ or $44.4 \mathrm{~m}^{2} \mathrm{~s}^{-2}$ if $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ is used]
Answer: [$6.6 \mathrm{~m} \mathrm{~s}^{-1} .6 .7 \mathrm{~m} \mathrm{~s}^{-1}$ if $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ is used.]

$$
\begin{aligned}
1 / 2110 \mathrm{~kg} \times v^{2} & =110 \mathrm{~kg} \times 9.81 \mathrm{~m} \mathrm{~s}^{-2} \times 2.22 \mathrm{~m} \text { or }=2400 \mathrm{~J} / 2396 \mathrm{~J} \\
v & =6.6 \mathrm{~m} \mathrm{~s}^{-1}\left[6.66 \mathrm{~m} \mathrm{~s}^{-1} \text { if } 10 \mathrm{~m} \mathrm{~s}^{-2} \text { used }\right](\mathbf{1})
\end{aligned}
$$

OR
Selects $v^{2}=u^{2}+2$ as or selects 2 relevant equations (1)
Correct substitution into equation (1)
Answer [6.6 m s${ }^{-1}$] (1)

$$
\begin{aligned}
& v^{2}=0 .+2 \times 9.81 \mathrm{~ms}^{-2} \times 2.22 \mathrm{~m} \\
& v=6.6 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

